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Akstract--The present paper advances three simple models and uses them to determine, semi-heuristically, 
the transition criteria from bubble to slug flow and from slug to froth flow. The bubble-slug transition 
is assumed to be governed by a criterion which expresses the conditions under which two aligned bubbles 
are driven to coalesce by the velocity field in the wake of the forward bubble, which is translated into 
a criterion on separation between bubbles. The slug-froth transition is thought to occur by one of two 
mechanisms. The first one is also a criterion of coalescence, resulting in the determination of a critical 
separation [. .  The second is supposed to occur when the thin film between the wall and a Taylor bubble 
becomes unstable. Of the two mechanisms, the second prevails when the distance between two Taylor 
bubbles exceeds the critical value l . .  The results, interpreted broadly, agree well with those of Taitel et 
al., but the impression that the field is in need of much further development cannot be ignored. The 
equations make it possible to study the sensitivity of the boundaries to pipe diameter, bubble diameter 
and fluid properties. A sample map in the usual ULS vs Uos coordinates is presented. 

1. I N T R O D U C T I O N  

An ability to predict the flow pattern which will be observed under given circumstances in 
two-phase flow constitutes one of the basic-Smsolved problems in this subject. The literature 
contains a number of so-called "maps", notably those propounded by Griffith & Wallis (1961) and 
Taitel et al. (1980), but the view prevails that they leave much to be desired. All, except Griffith 
and Wallis, employ dimensional coordinates consisting of the superficial velocities U~s vs UGs, 
whereas more general, dimensionless variables would be preferred. A study of the literature 
convinces one that the subject is intrinsically quite complex and that a proven, adequate set of 
parameters which determine the pattern remains to be discovered. 

An experimental investigation carried out by Bilicki (1987) has clearly pointed to the fact that 
the field overlaps the field of slug flow, the pattern in the transition region depending on the manner 
of air injection. This and other investigations Confirm that pattern boundaries in ULs, Uos 
coordinates cannot possibly be sharp that the discrepancies between different investigations may 
often be attributed to unidentified influences rather than faults in the respective techniques of 
experimentation. 

In the face of such a complex and largely unresolved state of affairs, it is still useful to attempt 
to interpret experimental data analytically. The present paper makes just such an attempt and 
chooses two very simple, not to say crude, models for the bubble-slug and slug-froth transitions. 
The structure of these simple models is inspired to a large extent by direct observation (Biticki 1987) 
and the conventional representation in terms of superiflcial velocities is retained faute de mieux. 
The analysis leads to a satisfactory (by the present standards of this topic) agreement with 
observations. 

Although the experimental content underlying this study is based on work with air-injected 
water, it is expected, not asserted, that the same boundaries exist in the presence of a phase 
transition. However, the results are definitely not applicable other than to the vertical upward-flow 
case described in Bilicki's investigation. 

2. T R A N S I T I O N  F R O M  B U B B L E  T O  S L U G  F L O W  

In order to estimate the point of transition between bubble and slug flow, we adopt the following 
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physical model. Bubble flow consists of an array of spherical gaseous elements which are dispersed 
over a liquid stream. The bubbles move upwards through the vertical channel with a velocity which 
exceeds that of the adjacent liquid. This relative slip causes a perturbation of the basic flow pattern 
and gives rise to a wake behind each bubble. The mean fluid velocity in each wake is also higher 
than that in the adjacent liquid. In some parts of the flow field there occur situations in which a 
bubble (say bubble No. 1 in figure 1) follows another bubble (bubble No. 2) and accelerates in 
the wake of No. 1. This creates a tendency for bubbles to catch up with predecessors and to 
coalesce. If  the distance, a, between two bubbles of which one trails the other exceeds a certain 
characteristic (or effective) length l, the two cease to interact, and the tendency to coalesce is absent. 
For values of a < l this tendency exists, bubbles coalesce, and eventually form Taylor bubbles. 
From the practical point of view, the transition is not sharp, because both quantities, i.e. a and 
l, are stochastic in nature and follow a probability distribution which is approximately Gaussian 
(Bilicki 1987; Sekoguchi et al. 1981). 

In the model under consideration, it has been assumed that transition occurs when the statistical 
(or ensemble) averages/and ~i of the above two quantities become equal. It is clear that the absolute 
velocity of a bubble has an axial as well as a radial component. In our model the assumption is 
made that the radial displacement of a bubble does not lead to coalescence and that only the axial 
component counts, as was observed visually in Bilicki's loop. 

We begin our analysis by considering a single spherical body which is dragged through a 
stationary fluid with a velocity U~, thus creating a wake behind it, figure 2. We assume that the 
velocity distribution u(z, r) in the wake is adequately described by Prandtl's theory of turbulent 
wakes and von Karman's similarity hypothesis (Schlichting 1979, pp. 585, 734). Essentially, this 
theory amounts to a dimensional analysis which is based on several well-proven physical 
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Figure 1. Notation. 
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Figure 2. Sphere dragged with velocity U s through fluid at rest. (Wake relative to liquid when sphere 
moves with a relative velocity.) 
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hypotheses and leads to the conclusions that the velocity u:(z, r) in the wake measured relative to 
the moving sphere, 

ut  = U =  - u ,  [1] 

is proportional to the group 

. :2] 

Here CD, is the drag of the sphere and fl is a constant of proportionality between the mixing length 
of the flow and the diametral width of the jet (Schlichting 1979, p. 742). The coefficient of 
proportionality between ul and the dimensionless group depends on r, and assumes some, as yet 
unspecified value when ut is measured along the flow axis, z. 

It is clear that in this modcl U~ represents the slip velocity, 

u~ u~ 
u =  = - -  . [ 3 ]  

1--~ 

Furthermore, it is hypothesized that the wake terminates when ut becomes equal to the local friction 
velocity v,, as mcasurcd by Theofanous & Sullivan (1982). The friction velocity is a measure of 
the velocity fluctuations in the liquid, and when the wake velocity attains the same magnitude, 

u ,  = v , ,  [ 4 ]  

the pull of the wake ceases. Thus, transcribed in our notation, we put 

. [1 1 -  m:)-l- 4~(I  - ~ ) ( l  - ~-2L) Dg-(!~-a)27 
T 4vh j 

L 7ya _j = - (1 + 1 . 5 ~ )  [5] 

Here D is the channel diameter, f is the friction factor for the liquid, and the coefficient ~ which 
appears in [19] of Theofanous & Sullivan has been assigned the value ~ = 4, i.e. close to the upper 
limit of 6 ,-, 2 to 4.5 recommended. Similarly a constant value f=0 .01  has been assumed, 
corresponding to a relative roughness of 10 -2 (Schlichting 1979, p. 624, f =  ¼2). Both numerical 
assumptions will be justified ex post. 

If a bubble is aligned with the wake of a preceding bubble, it will be drawn in if v, < ui, and 
the attraction will cease for v, = ut sufficiently closely. The length l which corresponds to this 
situation, figure 3, will satisfy [2] and [4]. 

Combining [2] with [4], and replacing the distance z with the limiting distance l, we derive that 

l C~ 2 U3~/~ 
= A, v3~: [61 

Here A l is a coefficient, to be determined experimentally. We assume that this ratio adequately 
approximates the ratio of stochastic averages I/a7 s. 
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Figure 3. Conditions for presence and absence of coalescence of two spheres. 
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Figure 4. Array for the calculation of the stochastic distance ratio a/ds. 

It is clear that the void fraction, ~, must be related to the stochastic value, as, of the bubble 
diameter for a given pipe diameter, and the distance d and spatial distribution of bubbles 
interpreted in a stochastic sense. Supposing the system is ergodic, we assume a regular array and 
postulate that the result remains valid for actual configurations. The recommended array is shown 
in figure 4. In it the bubbles simply place themselves at the vertices of cubes. The ratio a / d  s for 
this and other (discarded) arrays was compared with extensive photographs from which the 
frequency of pairs of bubbles was plotted against the ratio d/ds. The maximum of a standard 
distribution, representing the experiments (Bilicki 1987), differed from the calculation based on the 
cubic model by 10, whereas the standard deviation of the measurements was 25%. In the face of 
this result, we adopted the following correlation: 

d 1.6 
1. [7] 

~S-- ~ 1/3 

Since transition is postulated to occur when 

T 

and when the limiting value c~. corresponds to the correlation in [7], we can write the implicit 
equation 

1.6 C~52 U~ 2 
~,,3 t =Al  [9a] , U 3/2, 

or  

1.6 Cb "~ (.UGs ULS 3,2. [9bl 
,2,~;--5 - 1 = At v~  2 \ ~ ,  1 ~ , /  

The boundary between bubble and slug flow is governed by [9b] together with [5] in which 
is replaced by its limiting value ~, .  These two equations contain the unknowns v, ,  ULS, UGs and 

,,  and in order to arrive at the required locus in ULS, UGS coordinates, we supplement the system 
of equations with the momentum balance equation proposed by Ishii & Zuber (1979). Adapted 
to our case, we write 

gGs ULS = as g PL--PG(1--C~,) . [10] 
~ ,  1 - -  2 ,  CD PL 

The value of the product At C~ 2 which appears in [9b] has been so adjusted as to cause the locus 
UGs, ULS to pass through a single experimental point measured by Bilicki (1987). With 

= 0.34, ULS = 0.35 m/s and Ucs = 0.23 m/s 

we obtain 
Al C~ 2 = 0.527. [t 1] 

The flow-pattern boundary under discussion has been calculated numerically with the aid of [5], 
[9b] and [I0] with the constant value [11], and is shown in figures 5-8. Figure 5 corresponds to 
D = 2 0 m m ,  with d s = 2 m m ,  and a flow of air in water, so that pL= 1000kg/m 3 and 
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Figure 5. Calculated boundary between bubble and slug 
flow. The - - . - -  lines b t , b,. correspond to a deviation of 

_+ 15%. 
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Figure 6. Comparison between the present result, curve 
3, and the experimental range q, t., reported by Bilicki 

(1987). 
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Figure 7. Effect of  bubble diameter on the boundary: 
1, ds = 3 ram; 2, d s=  l m m .  
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Figure 8. Effect of pipe diameter: 3, D =20ram;  
4, D = 50 mm. 

PG = 1.25 kg/m 3. The baseline corresponds to a/a7 s = (~i/aTs), satisfying [7]; lines b I and b_, corre- 
spond to 

=(1_+0.15) ~ ," [121 

that is, to the limits dictated by experiment for a standard deviation of 25% and a confidence level 
of 0.9. 

Figure 6 compares the calculated result, curve 3, with the experimental range q,  t2 reported by 
Bilicki (1987). It appears that the proposed correlation constitutes a reasonable representation of 
the experimental results. 

The analytically derived correlation enables us now to assess the sensitivity of the predicted 
boundary to changes in some of the parameters. Figure 7 shows the influence of bubble diameter 
with d s = 3 mm (curve 1) and 1 mm (curve 2), respectively. The effect of pipe diameter results in 
the change from curve 3 (D = 20 mm) to curve 4 (50 ram); depicted in figure 8. Finally, figure 9 
illustrates the effect of a density ratio change from p t / p G  = 800 (air---curve 3) to PePG = 5 

(steam--curve 4). Curve 3 here is the same as curve 3 in figure 6 and the base curve in figure 5. 
Figure 10 shows a comparison of the present analytic correlation---curve 3--with that of Taitel 
e t  al.  (1980)---curve 6. In spite of the large differences in the approach to the problem, the two 
results are indistinguishable to all intents and purposes. 

The last diagram in this set, figure 11, compares our analytic results with those of the same 
experimenters as exhibited by Bilicki (1987). Since the other authors did not supply sufficient details 
of the conditions encountered in their experiments, we plot them against those curves from our 
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Figure 9. Effect of fluid densities: 3, PL = 1000 kg/m 3, 
Po = 1.25 kg/m3; 5, PL = 500 kg/m 3, Po = I00 kg/m 3. 
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Figure 10. Companson between tke present result 
(curve 3, from figures 5, 6, 8, and 9) and that due to 

Taitel et al. (1980) (cur~e 6). 
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Figure 11. Comparison of the present analytic results with the boundaries recommended by other 
investigators. 1, Present result, D = 20mm, d s = 3ram; air-water (pL/po= 800). 2, Present result, 
D --- 20 ram, ds = I mm; air-water (PL/Po = 800). 5, Present result, D = 20 mm, d s = 2 ram; steam-water 
(PL/P~ = 5). 6, Taitel et al. (1980). 7, Govier & Aziz (1972). 8, Griffith & Wallis (1961). 9, Sternling (1965). 

10, Gould (1974). l l, Oshinowo & Charles (1974). 

figures 5-10 which encompass  the widest  field o f  the  d i a g r a m  covered  by the range  o f  pa rame te r s  
discussed in this paper .  This  c o m p a r i s o n  mere ly  conf i rms the r emarks  made  in the i n t roduc t ion  
to the effect tha t  mos t  p r o b a b l y  several  influences still r emain  to be discovered.  Nevertheless ,  the 
coinc idence  be tween our  analysis ,  tha t  o f  Tai te l  et al. and  the exper imenta l  resul ts  o f  Bilicki and  
Tai te l  et al. lends an  au ra  o f  p laus ib i l i ty  to the present  (and Tai te l ' s ! )  ana ly t ic  fo rmula t ion .  

3. T R A N S I T I O N  F R O M  S L U G  TO F R O T H  F L O W  

3.1. General  R e m a r k s  

The d i a g r a m  in figure 12 shows a schemat ic  o f  slug flow, i.e, o f  the conf igura t ion  in which gas- 
or  vapor- f i l led  T a y l o r  bubbles  move  axia l ly  in a s ta t is t ical ly  d i s t r ibu ted  l inear  a r ray .  Two 
consecut ive  bubbles  are  sepa ra t ed  by a l iquid plug.  On  the basis  o f  obse rva t ion ,  we pos tu la te  tha t  
t rans i t ion  to froth flow m a y  occur  by one o f  two mechanisms .  F o r  the first, we pos tu la te  a 
mechan i sm o f  coalescence  o f  T a y l o r  bubbles  s imi lar  to the one discussed for spher ica l -bubb le  flow. 
This  is a s t a t ement  tha t  a T a y l o r  bubb le  which a p p r o a c h e s  the one ahead  o f  i t  by a d i s t ance  l lower 
than  a charac te r i s t i c  length I . ,  figure 12, will be forced by the flow field to ca tch  up and  coalesce 
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Figure 12. Slug-flow configuration. 
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Figure 13. Evolution of velocity profiles in a plug. 

with its predecessor. When this occurs, the slug-flow pattern gives way to froth flow. The critical 
length l ,  of l is characterized by the fact that the maximum velocity difference AU in the velocity 
distribution at level B-B induced in the liquid by the presence of bubble No. 1 has become equal 
to the friction velocity r ,  because the latter is a measure of local turbulent fluctuations. 

The second possible mechanism of flow-regime change is that of onset of instability in the thin 
cylindrical layer of thickness 6 which is formed between the Taylor bubble and the tube wall. This 
we base on the theory of thin liquid films (Moissis 1963; Milne-Thomson 1950). Of the two 
mechanisms, the second causes transition if film instability sets in when the distance between two 
Taylor bubbles exceeds the critical value l , .  

3.2. The Mechanism of Coalescence 

The velocity distributions in the plug between sections A-A and B-B of figure 12, are 
modifications of the basic volumetric velocity whose mean value is 

UM = ULS + Ucs. [13] 

The evolution of the velocity distributions in the plug is shown sketched in figure 13; the consecutive 
velocity profiles can all be regarded as evolving from the flow field in cross section A-A. 

We assume for a moment that the plug is stationary and consider the fluid issuing from the 
annulus of gap 5 whose mean velocity with respect to the tube we denote by Ur. This flow 
constitutes a wall jet of small width & wetting the tube of comparatively large diameter D. Thus, 
we can neglect the curvature and employ the theory of 2-D jets (Schlichting 1979, pp. 732-733) 
to determine the dimensional structure of the equation governing the evolution of velocity. The 
wall jet produces a very thin boundary layer near the wall and away from it projects a stream which 
has the character ofa  2-D jet. Denoting this velocity by Ut, we find that its maximum can be written 
(Schlichting 1979, pp. 732-733) as 

j ~ I,'2 
Um,x(Z) = const × \ ~ p /  . [14] 
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U f  

or, for 6 <<D, we simplify this to 

Neglecting the boundary, layer, we estimate the momentum of the flow J, as 

J=P il U~dA ~pU~6, [15] 
4~ 

where Af is the area of the annulus with respect to a unit diameter. Hence, 

U~,(z)  ~ 6 Ui.  [16] 
z 

In actual fact the Taylor bubble is not stationary and the velocity profile in cross section A-A is 
augmented by the air or vapor velocity, UGT, of the bubble, Nving a velocity difference AU. 

The velocity UGT has been investigated by Davies & Taylor (1950), Moissis & Griffith (1962) and, 
more recently, by Bendiksen (1985). We can assume here the relation 

UGT = 1.2 (ULs + UGS) + C[gD(pL -- pG)pL] l'z, [17a] 
with 

C = 0.35 + 2.8 e x p ( - 1 . 0 6 / ) .  [17b] 

The modulation of the velocity profile postulated for cross section A-A is sketched in figure 13 
for sections 1-1, 2-2 and B-B of figure 12. In each profile we discern the existence of a velocity 
maximum in the center and a velocity minimum in the annulus, the difference zXU decreasing with 

measured away (de = - dz) from A-A in accordance with the same relation as that postulated 
for a Taylor bubble at rest. Hence, 

A U  = (t-"GT + Uf) . [18] 

In order to relate the velocity profile ]-rfiplied by [16]-[17] to the basic flow in the channel, [13], 
we apply the continuity equation for the plug, ignoring the gas bubbles that are observed in it. 
Thus at level A-A, we write 

pL(ULs + UGS) A = pe[UfAf+ UGT(A -- At)]. [19] 

In any other cross section, we have 

pLA(ULs + UGs) = PL | U dA. [20] 
Z 4 

Here A = reD2~4 is the total area, and Af is the area of the annulus of width 6. By an obvious 
transformation, we calculate from [19] that 

UGT(D-2~)-" - -  D:(ULs + Uos)  

46(D-3) 

UGT -- (ULs + UGS) [21] 

To derive the criterion based on the comparison 

A U = v,  [22] 

mentioned earlier, we fall back on [5] in which ULs is replaced by ULS + UGS and in which the void 
fraction is retained, realizing that its value in the plug is small, but that the presence of bubbles 
is essential for the creation of the level of turbulence which corresponds to v , . t  Hence, 

t i n  subsequen t  ca lcula t ions  we put  ~ = 0.04 and  d D = 2 m m .  

[231 
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From [22] and [18], we deduce the following formula for the critical length: 

A:(Ur+ Uor)2 6 
l ,  = 2 [24] 

U, 

Here A2 is an adjustable constant to be determined later. It follows that transition occurs when 
the dimensionless distance l (referred to D) between bubbles becomes 

, ) 
5 ~< L vZ, ' [251 

In order to complete the calculation, it is necessary to adopt a hypothesis concerning the film 
thickness 6. We base it on the work of Ozgfi et al. (1973), and assume 

a = 1.5 [261 

The boundary between plug and froth flow can now be calculated numerically in the coordinates 
ULs vs UGs with l . /D as a parameter. To this end, we utilize the five equations [17a], [21], [23], 
[25] and [26] which contain the five unknowns Ur, UGT, V., 6, (ULs + U~s) and the parameter l , /D.  
Figure 14 contains several boundaries of this kind. The constant As is adjusted for the boundary 
to pass through one experimental point measured by Bilicki (1987). This was given by 
ULs = 0.01 m/s, UGs = 0.9 m/s, I . /D = 7; and resulted in 

A,_ = 0.35. [27] 

A similar criterion for the transition under discussion was utilized by Taitel et al. (1980) with 
the pipe entry length as a parameter. We suggest that our parameter l . /D  plays the same role as 
an entry length. This conviction is based on-_the observation that points on a given IE/D curve 
(lE = entry length) in Taitel et al. determine the flow conditions for which slug flow is about to 
change to froth flow. 

3.3. The Instability Mechanism 

The detailed theory of the second mechanism is based on the assumptions that: 

(a) the flow in the film is potential; 

(b) the perturbation amplitude is small; 

and 

(c) the inertial forces in the film may be neglected. 

The equation of motion in the film is 

O--x = Ot Ox Ox' [28a] 

in which ~ and • are the stream and potential functions, respectively, and r/ denotes the 
perturbation amplitude. 

Instabilities are due to the fact that the liquid film is excited externally by a flow of vapor or 
gas of velocity UGT and causes it to assume a wavy form. The potential equation [28] possesses 
a real solution for q, provided that 

UGT-I" Uf ~ Uti m (algebraic sum), [28b] 
where 

(__~_~ ~,/2 
Ulim ~ [29] \ p c ~ /  " 

Here a denotes the surface tension of water in the presence of air or steam, as the case may be. 
This relation is based on the same assumptions as those postulated by Feldman (1957); it was 
successfully employed by Mossis (1963), who claimed that the most unstable film occurs when its 
length ). = 10f. The experimental investigation carried out by Bilicki (1987) confirms the fact of 
transition from plug to froth flow and demonstrates that the limiting velocity Uum additionally 
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Figure 14. Boundary between slug flow and froth flow. 
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3, l,/D > 7, based on film stability. 
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l i ,  Oshinowo & Charles (1974). 

depends on the pipe diameter D. This means that the constant for [29] must display it. To retain 
dimensional homogeneity we put 

= [30a] 

Once again, Bilicki's work leads to the value 

- A 3 = 0.1. [30b] 

The locus defined by [30a] with UGT + /Jr from [28b] expressed with the aid of [29] is shown plotted 
in figure 14, curve 3. This locus is congruent to the curves l/l ,  = const and corresponds to 
(l,/D)>. 7. 

The comparison between our results and those of  other investigators, figure 15, shows good 
agreement as far as the general geometric shape of  the locus is concerned. Beyond that we can only 
reiterate the remarks made at the end of section 2, and to conclude that all results taken together 
do not yet amount to a scientific solution of the problem. 

4.  T R A N S I T I O N  F R O M  F R O T H  T O  A N N U L A R  M I S T  F L O W  

For the sake of completeness, we recall that in order to determine the criterion for the transition 
from froth to annular mist flow, it is usual to consider fully-developed annular flow and to 
determine the dynamic conditions under which the thin film of thickness 6 can be sustained in its 
upward flow by the shearing stress r~ produced by the faster-moving vapor stream. The condition 
for annular flow to persist has been studied by Waltis & Makkenokery (1974) and Pushkina 

IO.Oi i , / /  

,.o/bobb,e / 
f f , o w / .  = 
i /isJug leo 

o.ot I:i t 

O. I 1.0 10.0 

UGS, m / s  

Figure 16. Transition "map" for the upward flow of air in water with D = 20 mm,  d s = 2 mm,  l ,  ,'D > 7. 
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& Sorokin (1969). Dimensional analysis shows that the phenomenon is governed by the 
Kutateladze number, 

b2 
Ku = UGS PG [ga(PL - PG)]- 1~4 [31] 

Annular mist flow is possible when 

Ku > 3.2, [32] 

and below that value flooding occurs and froth flow persists. 

5. SUMMARY 

Figure 16 gives an idea of the type of "map" implied in the preceding equations; it was drawn 
for an upward flow of air in water with D = 20 ram, ds = 2ram and l . /D > 7. 
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